Over 60 trainings all over Europe for universities and industryOn-site trainings on the whole range of GPU computing technologiesEach lecture accompanied with a practical session on remote GPU clusterBest recipes of GPU code optimization, based on our 5-year development experienceWe have multiple training programs and even books! Check out our catalogue here.

Thrust/CUDA tip: reuse temporary buffer across multiple transforms

Category: CUDA Published: Thursday, 09 October 2014

Thrust is a very handy STL-like template library for rapid data processing on GPUs.

In real applications it is often needed to perform the same data processing (in Thrust's terminology - transform) multiple times on different datasets. Transforms containing reduction (reduction, sorting, transform-reduce, etc.) require temporary arrays allocation. By default these allocations are performed for each individual transform, adding cudaMalloc/cudaFree operations, that could be quite expensive:

An obvious optimization method here would be to reuse single temporary arrays set across multiple transforms. This could be done by hooking cudaMalloc/cudaFree at application level. More elegant solution exists in Thrust, recently pointed out by Eli Graser:

#include <thrust/system/cuda/vector.h>
#include <thrust/system/cuda/execution_policy.h>
#include <thrust/host_vector.h>
#include <thrust/generate.h>
#include <thrust/pair.h>
#include <iostream>
#include <map>

// Example by Nathan Bell and Jared Hoberock
// (modified by Mihail Ivakhnenko)
// This example demonstrates how to intercept calls to get_temporary_buffer
// and return_temporary_buffer to control how Thrust allocates temporary storage
// during algorithms such as thrust::reduce. The idea will be to create a simple
// cache of allocations to search when temporary storage is requested. If a hit
// is found in the cache, we quickly return the cached allocation instead of
// resorting to the more expensive thrust::cuda::malloc.
// Note: this implementation cached_allocator is not thread-safe. If multiple
// (host) threads use the same cached_allocator then they should gain exclusive
// access to the allocator before accessing its methods.

// cached_allocator: a simple allocator for caching allocation requests
class cached_allocator
	// just allocate bytes
	typedef char value_type;

	cached_allocator() { }

		// free all allocations when cached_allocator goes out of scope

	char* allocate(std::ptrdiff_t num_bytes)
		char* result = 0;

		// search the cache for a free block
		free_blocks_type::iterator free_block = free_blocks.find(num_bytes);

		if (free_block != free_blocks.end())
			std::cout << "cached_allocator::allocator(): found a hit" << std::endl;

			// get the pointer
			result = free_block->second;

			// erase from the free_blocks map
			// no allocation of the right size exists
			// create a new one with cuda::malloc
			// throw if cuda::malloc can't satisfy the request
				std::cout << "cached_allocator::allocator(): no free block found; calling cuda::malloc" << std::endl;

				// allocate memory and convert cuda::pointer to raw pointer
				result = thrust::cuda::malloc<char>(num_bytes).get();
			catch(std::runtime_error &e)

		// insert the allocated pointer into the allocated_blocks map
		allocated_blocks.insert(std::make_pair(result, num_bytes));

		return result;

	void deallocate(char* ptr, size_t n)
		// erase the allocated block from the allocated blocks map
		allocated_blocks_type::iterator iter = allocated_blocks.find(ptr);
		std::ptrdiff_t num_bytes = iter->second;

		// insert the block into the free blocks map
		free_blocks.insert(std::make_pair(num_bytes, ptr));

	typedef std::multimap<std::ptrdiff_t, char*> free_blocks_type;
	typedef std::map<char*, std::ptrdiff_t> allocated_blocks_type;

	free_blocks_type free_blocks;
	allocated_blocks_type allocated_blocks;

	void free_all()
		std::cout << "cached_allocator::free_all(): cleaning up after ourselves..." << std::endl;

		// deallocate all outstanding blocks in both lists
		for (free_blocks_type::iterator i = free_blocks.begin();
				i != free_blocks.end(); i++)
			// transform the pointer to cuda::pointer before calling cuda::free

		for (allocated_blocks_type::iterator i = allocated_blocks.begin();
				i != allocated_blocks.end(); i++)
			// transform the pointer to cuda::pointer before calling cuda::free

int main()
	std::cout << "This feature requires gcc >= 4.4" << std::endl;
	return 0;

	size_t n = 1 << 22;

	// create a cached_allocator object
	cached_allocator alloc;

	// generate and reduce random input
	thrust::host_vector<int> a_r_input(n);
	thrust::generate(a_r_input.begin(), a_r_input.end(), rand);
	thrust::cuda::vector<int> a_input = a_r_input;
	thrust::reduce(thrust::cuda::par(alloc), a_input.begin(), a_input.end());
	// generate and reduce random input
	thrust::host_vector<int> b_r_input(n);
	thrust::generate(b_r_input.begin(), b_r_input.end(), rand);
	thrust::cuda::vector<int> b_input = b_r_input;
	thrust::reduce(thrust::cuda::par(alloc), b_input.begin(), b_input.end());
	// generate and reduce random input
	thrust::host_vector<int> c_r_input(n);
	thrust::generate(c_r_input.begin(), c_r_input.end(), rand);
	thrust::cuda::vector<int> c_input = c_r_input;
	thrust::reduce(thrust::cuda::par(alloc), c_input.begin(), c_input.end());
	// generate and reduce random input
	thrust::host_vector<int> d_r_input(n);
	thrust::generate(d_r_input.begin(), d_r_input.end(), rand);
	thrust::cuda::vector<int> d_input = d_r_input;
	thrust::reduce(thrust::cuda::par(alloc), d_input.begin(), d_input.end());
	// generate and reduce random input
	thrust::host_vector<int> e_r_input(n);
	thrust::generate(e_r_input.begin(), e_r_input.end(), rand);
	thrust::cuda::vector<int> e_input = e_r_input;
	thrust::reduce(thrust::cuda::par(alloc), e_input.begin(), e_input.end());

	return 0;

With this custom allocator, cudaMalloc and cudaFree are now called only once, no additional calls between reductions:

In the real financial application we develop this optimization resulted into 8% performance improvement.

Hits: 7540